Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 3-[(3,5-dichloroanilino)carbonyl]propionate

B. S. Saraswathi,^a B. Thimme Gowda,^a* Sabine Foro^b and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 10 January 2010; accepted 12 January 2010

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.166; data-to-parameter ratio = 14.4.

In the title compound, $C_{11}H_{11}Cl_2NO_3$, the amide O atom and the carbonyl O atom of the ester segment are anti to each other and anti to the H atoms of the adjacent -CH₂ groups. In the crystal structure, molecules are packed into centrosymmetric dimers through intermolecular N-H···O hydrogen bonds. The dimers are linked into a layer structure extending parallel to ($\overline{102}$) by C-H···O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a,b,c).

Experimental

Crystal data

C ₁₁ H ₁₁ Cl ₂ NO ₃
$M_r = 276.11$
Monoclinic, C2/a
a = 12.865 (2) Å
b = 14.753 (3) Å
c = 14.114 (2) Å
$\beta = 109.59 \ (2)^{\circ}$

V = 2523.7 (7) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.51 \text{ mm}^{-1}$ T = 299 K $0.50\,\times\,0.16\,\times\,0.12$ mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford	Diffraction, 2009) $T_{\min} = 0.785$, $T_{\max} = 0.941$ 4503 measured reflections 2259 independent reflections 1453 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.166$ S = 1.09	H atoms treated by a mixture independent and constraine refinement

eated by a mixture of lent and constrained nt $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21$ e Å⁻³

Table 1

2259 reflections

157 parameters

1 restraint

S =

Hydrogen-bond geometry (Å, °).

$ \begin{array}{ccccc} N1 - H1N \cdots O2^{i} & 0.85 \ (2) & 2.17 \ (2) & 3.017 \ (4) & 172 \ (4) \\ C4 - H4 \cdots O1^{ii} & 0.93 & 2.45 & 3.379 \ (5) & 174 \end{array} $	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$\begin{array}{c} N1 - H1N \cdots O2^{i} \\ C4 - H4 \cdots O1^{ii} \end{array}$	0.85 (2) 0.93	2.17 (2) 2.45	3.017 (4) 3.379 (5)	172 (4) 174

Symmetry codes: (i) $-x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission (UGC), New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5017).

References

- Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2039
- Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009b). Acta Cryst. E65, 03064
- Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, 0873.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o387 [doi:10.1107/S1600536810001455]

Methyl 3-[(3,5-dichloroanilino)carbonyl]propionate

B. S. Saraswathi, B. T. Gowda, S. Foro and H. Fuess

Comment

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda *et al.*, 2009*a*,*b*,*c*), the crystal structure of *N*-(3,5-dichlorophenyl)methylsuccinamate [systematic name: 3-[(3,5-dichloro)-aminocarbonyl]propionate] has been determined.

The conformation of the amide O atom and the carbonyl O atom of the ester segment are *anti* to each other and both are *anti* to the H atoms of the adjacent -CH₂ groups (Fig. 1), similar to that observed in *N*-(3,5-dichlorophenyl)methylsuccinamic acid (Gowda *et al.*, 2009*c*) and *N*-(3,5-dimethylphenyl)ethylsuccinamate (Gowda *et al.*, 2009*a*).

In the crystal, molecules are packed into centrosymmetric dimers through intermolecular N—H…O hydrogen bonds (Table 1 and Fig.2).

Experimental

A solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with a solution of 3,5-dichloroaniline (0.02 mol) in toluene (20 ml) with constant stirring. The resulting mixture was stirred for 1 h and set aside for an additional 1 hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid *N*-(3,5-dichlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from methanol. Pure *N*-(3,5-dichlorophenyl)succinamic acid in methanol was refluxed with 2 ml of conc. sulfuric acid for 2 h and was subjected to slow evaporation. The resulting *N*-(3,5-dichlorophenyl)methylsuccinamate was recrystallized from methanol. The purity of the compound was checked and characterized by its IR and NMR spectra. Single crystals were grown in a methanol solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and refined with a N–H distance restraint of 0.86 (2) Å. The remaining H atoms were positioned geometrically [C–H = 0.93-0.97 Å] and refined using a riding model. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Figures

Fig. 1. Molecular structure of the title compound, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Part of the crystal structure of the title compound, showing hydrogen-bonded (dashed lines) dimers.

Methyl 3-[(3,5-dichloroanilino)carbonyl]propionate

Crystal data

F(000) = 1136
$D_{\rm x} = 1.453 \ {\rm Mg \ m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1000 reflections
$\theta = 3.0-28.1^{\circ}$
$\mu = 0.51 \text{ mm}^{-1}$
T = 299 K
Needle, colourless
$0.50 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector	2259 independent reflections
Radiation source: fine-focus sealed tube	1453 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
Rotation method data acquisition using ω and ϕ scans.	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	$h = -11 \rightarrow 15$
$T_{\min} = 0.785, \ T_{\max} = 0.941$	$k = -17 \rightarrow 10$
4503 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.166$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0595P)^{2} + 4.6291P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2259 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
157 parameters	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$

supplementary materials

1 restraint

$$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.0757 (3)	0.6059 (3)	0.6618 (3)	0.0532 (9)
C2	0.0482 (3)	0.5146 (3)	0.6460 (3)	0.0591 (10)
H2	-0.0243	0.4975	0.6116	0.071*
C3	0.1280 (3)	0.4501 (3)	0.6814 (3)	0.0616 (11)
C4	0.2370 (3)	0.4721 (3)	0.7337 (3)	0.0627 (11)
H4	0.2906	0.4276	0.7580	0.075*
C5	0.2620 (3)	0.5621 (3)	0.7481 (3)	0.0583 (10)
C6	0.1848 (3)	0.6306 (3)	0.7149 (3)	0.0565 (10)
Н6	0.2048	0.6911	0.7275	0.068*
C7	-0.0024 (3)	0.7610 (3)	0.6273 (3)	0.0560 (10)
C8	-0.1087 (3)	0.8104 (3)	0.5736 (3)	0.0603 (11)
H8A	-0.1369	0.7910	0.5040	0.072*
H8B	-0.1632	0.7953	0.6047	0.072*
C9	-0.0911 (3)	0.9108 (3)	0.5778 (3)	0.0624 (11)
H9A	-0.0324	0.9245	0.5512	0.075*
H9B	-0.0665	0.9298	0.6477	0.075*
C10	-0.1908 (3)	0.9652 (3)	0.5209 (3)	0.0551 (10)
C11	-0.2543 (4)	1.1146 (3)	0.4756 (4)	0.0849 (15)
H11A	-0.3094	1.1103	0.5074	0.102*
H11B	-0.2866	1.0998	0.4056	0.102*
H11C	-0.2258	1.1753	0.4824	0.102*
N1	-0.0090 (2)	0.6699 (2)	0.6230 (3)	0.0569 (9)
H1N	-0.072 (2)	0.645 (3)	0.595 (3)	0.068*
01	0.0828 (2)	0.8016 (2)	0.6710 (3)	0.0875 (11)
O2	-0.2818 (2)	0.93505 (18)	0.4784 (2)	0.0668 (8)
O3	-0.1659 (2)	1.05231 (19)	0.5228 (2)	0.0754 (9)
Cl1	0.09280 (11)	0.33629 (8)	0.66222 (11)	0.0926 (5)
C12	0.39797 (8)	0.59326 (9)	0.81343 (10)	0.0845 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0445 (19)	0.062 (2)	0.051 (2)	0.0079 (18)	0.0133 (17)	0.0045 (19)
0.057 (2)	0.059 (3)	0.058 (2)	-0.0010 (19)	0.0150 (18)	-0.001 (2)
0.067 (2)	0.056 (3)	0.064 (3)	0.010 (2)	0.024 (2)	0.004 (2)
0.061 (2)	0.067 (3)	0.061 (3)	0.019 (2)	0.021 (2)	0.008 (2)
0.048 (2)	0.070 (3)	0.056 (2)	0.0104 (19)	0.0149 (18)	0.002 (2)
0.048 (2)	0.061 (2)	0.056 (2)	0.0050 (19)	0.0113 (18)	0.0050 (19)
0.044 (2)	0.053 (2)	0.061 (3)	-0.0037 (18)	0.0048 (17)	0.0035 (19)
0.045 (2)	0.057 (2)	0.066 (3)	-0.0019 (18)	0.0017 (18)	0.004 (2)
0.045 (2)	0.058 (3)	0.072 (3)	-0.0013 (18)	0.0032 (19)	0.005 (2)
0.052 (2)	0.054 (2)	0.055 (2)	-0.0041 (18)	0.0130 (18)	-0.0002 (19)
0.096 (4)	0.058 (3)	0.101 (4)	0.018 (3)	0.033 (3)	0.010 (3)
0.0402 (16)	0.055 (2)	0.065 (2)	-0.0013 (15)	0.0040 (15)	0.0031 (16)
0.0455 (16)	0.0632 (19)	0.125 (3)	-0.0082 (14)	-0.0102 (16)	0.0064 (18)
0.0458 (15)	0.0670 (18)	0.075 (2)	-0.0014 (13)	0.0035 (13)	0.0041 (15)
0.0653 (18)	0.0543 (18)	0.095 (2)	0.0024 (14)	0.0120 (16)	0.0036 (16)
0.0935 (9)	0.0592 (7)	0.1195 (12)	0.0048 (6)	0.0283 (8)	-0.0022 (7)
0.0464 (6)	0.0885 (9)	0.1033 (10)	0.0137 (5)	0.0047 (6)	-0.0017 (7)
	U^{11} 0.0445 (19) 0.057 (2) 0.067 (2) 0.061 (2) 0.048 (2) 0.048 (2) 0.048 (2) 0.045 (2) 0.045 (2) 0.052 (2) 0.096 (4) 0.0402 (16) 0.0455 (16) 0.0458 (15) 0.0653 (18) 0.0935 (9) 0.0464 (6)	U^{11} U^{22} $0.0445 (19)$ $0.062 (2)$ $0.057 (2)$ $0.059 (3)$ $0.067 (2)$ $0.056 (3)$ $0.061 (2)$ $0.067 (3)$ $0.048 (2)$ $0.070 (3)$ $0.048 (2)$ $0.061 (2)$ $0.048 (2)$ $0.053 (2)$ $0.048 (2)$ $0.057 (2)$ $0.048 (2)$ $0.057 (2)$ $0.045 (2)$ $0.058 (3)$ $0.052 (2)$ $0.054 (2)$ $0.096 (4)$ $0.058 (3)$ $0.0402 (16)$ $0.055 (2)$ $0.0455 (16)$ $0.0670 (18)$ $0.0653 (18)$ $0.0543 (18)$ $0.0935 (9)$ $0.0885 (9)$	U^{11} U^{22} U^{33} $0.0445 (19)$ $0.062 (2)$ $0.051 (2)$ $0.057 (2)$ $0.059 (3)$ $0.058 (2)$ $0.067 (2)$ $0.056 (3)$ $0.064 (3)$ $0.061 (2)$ $0.067 (3)$ $0.061 (3)$ $0.048 (2)$ $0.070 (3)$ $0.056 (2)$ $0.048 (2)$ $0.061 (2)$ $0.056 (2)$ $0.048 (2)$ $0.061 (2)$ $0.056 (2)$ $0.048 (2)$ $0.053 (2)$ $0.061 (3)$ $0.045 (2)$ $0.057 (2)$ $0.066 (3)$ $0.045 (2)$ $0.057 (2)$ $0.066 (3)$ $0.045 (2)$ $0.058 (3)$ $0.172 (3)$ $0.052 (2)$ $0.058 (3)$ $0.101 (4)$ $0.0402 (16)$ $0.058 (3)$ $0.101 (4)$ $0.0455 (16)$ $0.0632 (19)$ $0.125 (3)$ $0.0458 (15)$ $0.0670 (18)$ $0.075 (2)$ $0.0653 (18)$ $0.0543 (18)$ $0.095 (2)$ $0.0935 (9)$ $0.0592 (7)$ $0.1195 (12)$ $0.0464 (6)$ $0.0885 (9)$ $0.1033 (10)$	U^{11} U^{22} U^{33} U^{12} 0.0445 (19)0.062 (2)0.051 (2)0.0079 (18)0.057 (2)0.059 (3)0.058 (2) $-0.0010 (19)$ 0.067 (2)0.056 (3)0.064 (3)0.010 (2)0.061 (2)0.067 (3)0.061 (3)0.019 (2)0.048 (2)0.070 (3)0.056 (2)0.0104 (19)0.048 (2)0.061 (2)0.056 (2)0.0050 (19)0.044 (2)0.053 (2)0.061 (3) $-0.0037 (18)$ 0.045 (2)0.057 (2)0.066 (3) $-0.0019 (18)$ 0.045 (2)0.058 (3)0.072 (3) $-0.0013 (18)$ 0.052 (2)0.054 (2)0.055 (2) $-0.0041 (18)$ 0.096 (4)0.058 (3)0.101 (4)0.018 (3)0.0402 (16)0.052 (2)0.065 (2) $-0.0013 (15)$ 0.0455 (16)0.0670 (18)0.075 (2) $-0.0014 (13)$ 0.0653 (18)0.0543 (18)0.095 (2)0.0024 (14)0.0935 (9)0.0592 (7)0.1195 (12)0.0048 (6)0.0464 (6)0.0885 (9)0.1033 (10)0.1137 (5)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0445 (19)0.062 (2)0.051 (2)0.0079 (18)0.0133 (17)0.057 (2)0.059 (3)0.058 (2) -0.0010 (19)0.0150 (18)0.067 (2)0.056 (3)0.064 (3)0.010 (2)0.024 (2)0.061 (2)0.067 (3)0.061 (3)0.019 (2)0.021 (2)0.048 (2)0.061 (2)0.056 (2)0.0104 (19)0.0149 (18)0.048 (2)0.061 (2)0.056 (2)0.0050 (19)0.0113 (18)0.048 (2)0.053 (2)0.061 (3) -0.0037 (18)0.0048 (17)0.045 (2)0.057 (2)0.066 (3) -0.0019 (18)0.0017 (18)0.045 (2)0.058 (3)0.072 (3) -0.0013 (18)0.0032 (19)0.052 (2)0.054 (2)0.055 (2) -0.0041 (18)0.0130 (18)0.096 (4)0.058 (3)0.101 (4)0.018 (3)0.033 (3)0.0402 (16)0.055 (2) -0.0013 (15)0.0040 (15)0.0455 (16)0.0632 (19)0.125 (3) -0.0014 (13)0.0035 (13)0.0653 (18)0.0543 (18)0.095 (2)0.0024 (14)0.0120 (16)0.0935 (9)0.0592 (7)0.1195 (12)0.0048 (6)0.0283 (8)0.0464 (6)0.0885 (9)0.1033 (10)0.0137 (5)0.0047 (6)

Geometric parameters (Å, °)

C1—C2	1.391 (5)	С7—С8	1.510 (5)
C1—C6	1.401 (5)	C8—C9	1.496 (5)
C1—N1	1.407 (5)	C8—H8A	0.97
C2—C3	1.366 (5)	C8—H8B	0.97
С2—Н2	0.93	C9—C10	1.499 (5)
C3—C4	1.387 (6)	С9—Н9А	0.97
C3—Cl1	1.736 (4)	С9—Н9В	0.97
C4—C5	1.365 (6)	C10—O2	1.207 (4)
C4—H4	0.93	C10—O3	1.322 (4)
C5—C6	1.384 (5)	C11—O3	1.440 (5)
C5—C12	1.743 (4)	C11—H11A	0.96
С6—Н6	0.93	C11—H11B	0.96
C7—O1	1.219 (4)	C11—H11C	0.96
C7—N1	1.347 (5)	N1—H1N	0.850 (19)
C2—C1—C6	119.5 (4)	С7—С8—Н8А	109.4
C2—C1—N1	117.8 (3)	С9—С8—Н8В	109.4
C6—C1—N1	122.7 (4)	С7—С8—Н8В	109.4
C3—C2—C1	119.8 (4)	H8A—C8—H8B	108.0
С3—С2—Н2	120.1	C8—C9—C10	114.7 (3)
C1—C2—H2	120.1	С8—С9—Н9А	108.6
C2—C3—C4	122.2 (4)	С10—С9—Н9А	108.6
C2—C3—Cl1	119.4 (3)	С8—С9—Н9В	108.6
C4—C3—Cl1	118.3 (3)	С10—С9—Н9В	108.6
C5—C4—C3	116.9 (4)	Н9А—С9—Н9В	107.6

С5—С4—Н4	121.5	O2—C10—O3	123.8 (4)
C3—C4—H4	121.5	O2—C10—C9	125.6 (4)
C4—C5—C6	123.6 (4)	O3—C10—C9	110.6 (3)
C4—C5—Cl2	118.7 (3)	O3—C11—H11A	109.5
C6—C5—Cl2	117.7 (3)	O3—C11—H11B	109.5
C5—C6—C1	117.9 (4)	H11A—C11—H11B	109.5
С5—С6—Н6	121.1	O3—C11—H11C	109.5
С1—С6—Н6	121.1	H11A—C11—H11C	109.5
O1—C7—N1	123.0 (4)	H11B—C11—H11C	109.5
O1—C7—C8	121.8 (4)	C7—N1—C1	128.6 (3)
N1—C7—C8	115.2 (3)	C7—N1—H1N	119 (3)
C9—C8—C7	111.0 (3)	C1—N1—H1N	113 (3)
С9—С8—Н8А	109.4	C10—O3—C11	117.5 (3)
C6—C1—C2—C3	-0.8 (6)	O1—C7—C8—C9	3.2 (6)
N1—C1—C2—C3	179.3 (4)	N1—C7—C8—C9	-176.8 (4)
C1—C2—C3—C4	0.4 (6)	C7—C8—C9—C10	176.4 (4)
C1-C2-C3-Cl1	179.5 (3)	C8—C9—C10—O2	4.0 (6)
C2—C3—C4—C5	-0.6 (6)	C8—C9—C10—O3	-175.6 (4)
Cl1—C3—C4—C5	-179.6 (3)	O1—C7—N1—C1	-2.7 (7)
C3—C4—C5—C6	1.1 (6)	C8—C7—N1—C1	177.3 (4)
C3—C4—C5—Cl2	-180.0 (3)	C2-C1-N1-C7	-178.9 (4)
C4—C5—C6—C1	-1.5 (6)	C6—C1—N1—C7	1.2 (6)
Cl2—C5—C6—C1	179.6 (3)	O2—C10—O3—C11	3.3 (6)
C2-C1-C6-C5	1.3 (6)	C9—C10—O3—C11	-177.0 (4)
N1-C1-C6-C5	-178.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N····O2 ⁱ	0.85 (2)	2.17 (2)	3.017 (4)	172 (4)
C4—H4···O1 ⁱⁱ	0.93	2.45	3.379 (5)	174
Summatry adday (i) $u = 1/2$ $u = 2/2$ $z = 1$	(ii) $m + 1/2 = 1/2 = -1/2$	12		

Symmetry codes: (i) -x-1/2, -y+3/2, -z+1; (ii) -x+1/2, y-1/2, -z+3/2.

Fig. 2